Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests.

نویسندگان

  • A Berzins
  • B Shah
  • H Weinans
  • D R Sumner
چکیده

Push-out and pull-out tests are used for destructive evaluation of implant-bone interface strength. Because nondestructive mechanical tests would allow maintenance of an intact interface for subsequent morphological study, we developed such a test to determine the shear modulus of the interface by measuring the shear deformation of a thin layer adjacent to the implant. A polyurethane foam model was used to test the experimental setup on a group of nine cylindrical implants with three different lengths (15-48 mm) and three different diameters (5-9.7 mm). The shear modulus of the interface, as calculated from the pull-out test, was validated against the shear modulus of the foam derived from tensile tests. The two values of shear modulus were well correlated (R2 = 0.8, p < 0.001), thus encouraging further application of the setup for tests of implant-bone interface mechanics. In addition, we also examined the effects of implant length and diameter. The length of the implants had a significant influence on the interface shear modulus (p < 0.05), indicating that comparisons of the variable should only be made of implants with the same length. The length and diameter of the implants were not critical parameters for the ultimate fixation strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freezing of Rat Tibiae at -20°C Does Not Affect the Mechanical Properties of Intramedullary Bone/Implant-Interface: Brief Report

BACKGROUND The effects of freezing-thawing cycles on intramedullary bone-implant interfaces have been studied in a rat model in mechanical pull-out tests. IMPLANTS: Twenty TiAl6V4 rods (Ø 0.8 mm, length 10 mm) implanted in rat tibiae METHODS 10 rats underwent bilateral tibial implantation of titanium rods. At eight weeks, the animals were sacrificed and tibiae harvested for biomechanical test...

متن کامل

Load transfer along the bone-dental implant interface.

In this paper the variation of normal and shear stresses along a path defined on the bone-dental implant interface is investigated. In particular, the effects of implant diameter, collar length and slope, body length, and the effects of four different types of external threads on the interfacial stress distribution are studied. The geometry of the bone is digitized from a CT scan of a mandibula...

متن کامل

تحلیل بیومکانیکی پیچ و مخروط و آنالیز حساسیت شل شدن اباتمنت در ایمپلنت‌های دندانی

Background and Aims: Different mechanisms have been developed for connecting abutment to implant. One of the most popular mechanisms is Tapered Integrated Screw (TIS), which is a Tapered Interference Fit (TIF) with a screw integrated at the bottom of that. The aim of this study was to investigate the mechanism of TIS and effective factors in employing TIS during design and implementation proces...

متن کامل

Comparative Evaluation of Microleakage at the Interface of Titanium and Zirconium Abutments Following Oblique Cyclic Loading: An in vitro Study

Abstract Background and aim: Oral microbiota could proliferate the microspace between the implant and abutment, thereby cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to investigate the effect of two types of abutments (zirconia and titanium) on microleakage at implant-abutment interface area under oblique cyclic loading in vitro. Materials and methods:In thi...

متن کامل

The axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.

This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 34 3  شماره 

صفحات  -

تاریخ انتشار 1997